
    #hs                     4    d dl Z d dlmZ  G d d          ZdS )    N)Optionalc            	           e Zd ZdZdZdZddZddej        fde	d	e
ej                 d
ej        dej        fdZdej        fde	d	e
ej                 d
ej        dej        fdZd Zd Zd Zd ZdS )SobolEnginea  
    The :class:`torch.quasirandom.SobolEngine` is an engine for generating
    (scrambled) Sobol sequences. Sobol sequences are an example of low
    discrepancy quasi-random sequences.

    This implementation of an engine for Sobol sequences is capable of
    sampling sequences up to a maximum dimension of 21201. It uses direction
    numbers from https://web.maths.unsw.edu.au/~fkuo/sobol/ obtained using the
    search criterion D(6) up to the dimension 21201. This is the recommended
    choice by the authors.

    References:
      - Art B. Owen. Scrambling Sobol and Niederreiter-Xing points.
        Journal of Complexity, 14(4):466-489, December 1998.

      - I. M. Sobol. The distribution of points in a cube and the accurate
        evaluation of integrals.
        Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967.

    Args:
        dimension (Int): The dimensionality of the sequence to be drawn
        scramble (bool, optional): Setting this to ``True`` will produce
                                   scrambled Sobol sequences. Scrambling is
                                   capable of producing better Sobol
                                   sequences. Default: ``False``.
        seed (Int, optional): This is the seed for the scrambling. The seed
                              of the random number generator is set to this,
                              if specified. Otherwise, it uses a random seed.
                              Default: ``None``

    Examples::

        >>> # xdoctest: +SKIP("unseeded random state")
        >>> soboleng = torch.quasirandom.SobolEngine(dimension=5)
        >>> soboleng.draw(3)
        tensor([[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
                [0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
                [0.7500, 0.2500, 0.2500, 0.2500, 0.7500]])
       iR  FNc                    || j         k    s|dk     rt          d| j          d          || _        || _        || _        t          j        d          }t          j        || j        |t
          j	                  | _
        t          j        | j
        | j                   | j        s,t          j        | j        |t
          j	                  | _        n|                                  | j                            t
          j                  | _        | j        d| j        z  z                      dd          | _        d	| _        d S )
N   z9Supported range of dimensionality for SobolEngine is [1, ]cpu)devicedtype)memory_format   r   )MAXDIM
ValueErrorseedscramble	dimensiontorchr   zerosMAXBITlong
sobolstate_sobol_engine_initialize_state_shift	_scrambleclonecontiguous_formatquasireshape_first_pointnum_generated)selfr   r   r   r
   s        Q/var/www/html/auto_sub_bot/venv/lib/python3.11/site-packages/torch/quasirandom.py__init__zSobolEngine.__init__0   s/   t{""i!mm F7;{F F F G G G 	 "l5!!+iSPUPZ[[[-dot~NNN} 	T^CuzRRRDJJNNZ%%E4K%LL
!Z!t{*::CCArJJ    r   noutr   returnc                    | j         dk    rx|dk    r| j                            |          }nt          j        | j        |dz
  | j        | j        | j         |          \  }| _        t          j        | j        |fd          }n9t          j        | j        || j        | j        | j         dz
  |          \  }| _        | xj         |z  c_         |*|	                    |          
                    |           |S |S )at  
        Function to draw a sequence of :attr:`n` points from a Sobol sequence.
        Note that the samples are dependent on the previous samples. The size
        of the result is :math:`(n, dimension)`.

        Args:
            n (Int, optional): The length of sequence of points to draw.
                               Default: 1
            out (Tensor, optional): The output tensor
            dtype (:class:`torch.dtype`, optional): the desired data type of the
                                                    returned tensor.
                                                    Default: ``torch.float32``
        r   r   )r   )dim)r"   r!   tor   _sobol_engine_drawr   r   r   cat
resize_as_copy_)r#   r'   r(   r   results        r$   drawzSobolEngine.drawG   s    ""Avv*--e44%*%=JAtHZbg& & &"
 D$5v#>BGGG!&!9
At@RUV@V^c" " "FDJ 	a?NN6""((000Jr&   mc                     d|z  }| j         |z   }||dz
  z  dk    s&t          d| j          d| j          d| d| d	          |                     |||	          S )
aR  
        Function to draw a sequence of :attr:`2**m` points from a Sobol sequence.
        Note that the samples are dependent on the previous samples. The size
        of the result is :math:`(2**m, dimension)`.

        Args:
            m (Int): The (base2) exponent of the number of points to draw.
            out (Tensor, optional): The output tensor
            dtype (:class:`torch.dtype`, optional): the desired data type of the
                                                    returned tensor.
                                                    Default: ``torch.float32``
        r   r   r   zFThe balance properties of Sobol' points require n to be a power of 2. z0 points have been previously generated, then: n=z+2**=zH. If you still want to do this, please use 'SobolEngine.draw()' instead.)r'   r(   r   )r"   r   r3   )r#   r4   r(   r   r'   total_ns         r$   
draw_base2zSobolEngine.draw_base2k   s     F$q(7Q;'1,, =6:6H= =>B>P= =VW= =Za= = =    yy1#Uy333r&   c                 R    | j                             | j                   d| _        | S )zF
        Function to reset the ``SobolEngine`` to base state.
        r   )r   r1   r   r"   )r#   s    r$   resetzSobolEngine.reset   s)     	
$$$r&   c                     | j         dk    r0t          j        | j        |dz
  | j        | j        | j                    n/t          j        | j        || j        | j        | j         dz
             | xj         |z  c_         | S )a  
        Function to fast-forward the state of the ``SobolEngine`` by
        :attr:`n` steps. This is equivalent to drawing :attr:`n` samples
        without using the samples.

        Args:
            n (Int): The number of steps to fast-forward by.
        r   r   )r"   r   _sobol_engine_ff_r   r   r   )r#   r'   s     r$   fast_forwardzSobolEngine.fast_forward   s~     ""#DJAtX\Xjkkkk#DJ4?DNTXTfijTjkkkar&   c                 ,   d }| j         -t          j                    }|                    | j                    t          j        d          }t          j        d| j        | j        f||          }t          j        |t          j	        dt          j
        d| j        |                              | _        | j        | j        | j        f}t          j        d|||                                          }t          j        | j        || j                   d S )Nr
   r   )r   	generatorr   )r   )r   r   	Generatormanual_seedr   randintr   r   mvpowaranger   tril_sobol_engine_scramble_r   )r#   gr
   
shift_intsltm_dimsltms         r$   r   zSobolEngine._scramble   s    '+9 !!AMM$)$$$l5!! ]1t~t{&CC[\]]]
Xj%)Au|At{[^7_7_7_*`*`aa
 NDK=mAxqAAAFFHH%dosDNKKKKKr&   c                     d| j          g}| j        r|dgz  }| j        |d| j         gz  }| j        j        dz   d                    |          z   dz   S )Nz
dimension=zscramble=Truezseed=(z, ))r   r   r   	__class____name__join)r#   
fmt_strings     r$   __repr__zSobolEngine.__repr__   sq    34>334
= 	,?++J9 .49..//J~&,tyy/D/DDsJJr&   )FN)rP   
__module____qualname____doc__r   r   r%   r   float32intr   Tensorr   r3   r8   r:   r=   r   rS    r&   r$   r   r      s        & &N FF   . T"'-" "c "HU\$: "K"49L" " " "H @D(-4 4C 4hu|&< 4+4:?,4 4 4 42     L L L$K K K K Kr&   r   )r   typingr   r   rZ   r&   r$   <module>r\      sf          oK oK oK oK oK oK oK oK oK oKr&   