
    $h,C                     &   d dl Z d dlmZmZ d dlZd dlmZ ddlmZmZm	Z	m
Z
mZmZmZmZmZ ddgZ G d de          Zd	d
e de	 dz   e_        	 	 	 	 ddee         dee         dee         dee         dee         dedee         dededededededefdZdee         dee         dee         dee         dee         dedededededededefdZdee         dee         dee         dee         dee         dedededededededefdZdS )     N)ListOptional)Tensor   )		Optimizer_default_to_fused_or_foreach_differentiable_doc_dispatch_sqrt_foreach_doc
_get_value_stack_if_compiling_use_grad_for_differentiable_view_as_realRAdamradamc                   t     e Zd Z	 	 	 	 	 ddddded	ee         d
ef fdZ fdZd Zedd            Z	 xZ
S )r   MbP?g?g+?:0yE>r   FN)foreachdifferentiabledecoupled_weight_decayr   r   c          	         d|k    st          d|           d|k    st          d|           d|d         cxk    rdk     sn t          d|d                    d|d         cxk    rdk     sn t          d|d                    d|k    st          d	|           t          |||||||
          }	t                                          ||	           d S )N        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: r   z#Invalid beta parameter at index 1: zInvalid weight_decay value: )lrbetasepsweight_decayr   r   r   )
ValueErrordictsuper__init__)selfparamsr   r   r   r   r   r   r   defaults	__class__s             Q/var/www/html/auto_sub_bot/venv/lib/python3.11/site-packages/torch/optim/radam.pyr#   zRAdam.__init__   s.    byy;r;;<<<czz<s<<===eAh$$$$$$$$M58MMNNNeAh$$$$$$$$M58MMNNNl""JLJJKKK%#9)
 
 
 	*****    c                    t                                          |           | j        D ]D}|                    dd            |                    dd           |                    dd           Et	          | j                                                  }t          |          dk    ot          j	        |d         d                   }|s;|D ]:}t          j
        t          |d                   t          j                  |d<   9d S d S )Nr   r   Fr   r   stepdtype)r"   __setstate__param_groups
setdefaultliststatevalueslentorch	is_tensortensorfloatfloat32)r$   r2   groupstate_valuesstep_is_tensorsr'   s         r(   r.   zRAdam.__setstate__8   s   U###& 	> 	>EY----u5555u====DJ--//00l++q0 
eoOF#7
 7
  	P! P P!Lqy)9)9OOO&			P 	PP Pr)   c                    d}|d         D ]F}|j         ;|t          j        |          z  }|                    |           |j         j        rt          d          |                    |j                    | j        |         }	t          |	          dk    rit          j        dt          j	                  |	d<   t          j
        |t          j                  |	d	<   t          j
        |t          j                  |	d
<   |                    |	d	                    |                    |	d
                    |                    |	d                    H|S )NFr%   z'RAdam does not support sparse gradientsr   r   r,   r+   )memory_formatexp_avg
exp_avg_sq)gradr5   
is_complexappend	is_sparseRuntimeErrorr2   r4   r7   r9   
zeros_likepreserve_format)
r$   r:   params_with_gradgradsexp_avgsexp_avg_sqsstate_stepshas_complexpr2   s
             r(   _init_groupzRAdam._init_groupF   sK   x 	2 	2Av!u/222 ''***6# R&'PQQQQV$$$
1u::??$)LEM$J$J$JE&M','7)>( ( (E)$ +0*:)>+ + +E,' i 0111""5#6777""5=111r)   c                 l   d}|5t          j                    5   |            }ddd           n# 1 swxY w Y   | j        D ]r}g }g }g }g }g }|d         \  }	}
|                     ||||||          }t	          ||||||	|
|d         |d         |d         |d         |d         |d         |	           s|S )
zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r   r   r   )	beta1beta2r   r   r   r   r   r   rN   )r5   enable_gradr/   rP   r   )r$   closurelossr:   rI   rJ   rK   rL   rM   rR   rS   rN   s               r(   r+   z
RAdam.stepc   sD    "$$ ! !wyy! ! ! ! ! ! ! ! ! ! ! ! ! ! ! & 	 	E!EHKK >LE5**52BE8U`bmnnK ;">2%Li($%56',-E'F'    " s   /33)r   r   r   r   FN)__name__
__module____qualname__boolr   r#   r.   rP   r   r+   __classcell__)r'   s   @r(   r   r      s         ',+ #'$+ + + !%+ $+ + + + + + +BP P P P P  : "' ' ' "!' ' ' ' 'r)   a  Implements RAdam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
                \lambda \text{ (weightdecay)},                                                   \\
            &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
            &\rule{110mm}{0.4pt}  \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{6mm} g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1})                      \\
            &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\
            &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
            &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\
            &\hspace{12mm}\textbf{else}                                                          \\
            &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\
            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
            &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\
            &\hspace{12mm} r_t \leftarrow
      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.

    This implementation provides an option to use either the original weight_decay implementation as in Adam
    (where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
    to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
    (default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
    corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
    about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.

    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): whether to use decoupled weight
            decay as in AdamW to obtain RAdamW (default: False)
        z	
        a  

    .. _On the variance of the adaptive learning rate and beyond:
        https://arxiv.org/abs/1908.03265
    .. _author's implementation:
        https://github.com/LiyuanLucasLiu/RAdam
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101

    Fr%   rJ   rK   rL   rM   r   r   r   rN   rR   rS   r   r   r   c	                p   t          d |D                       st          d          |t          | |d          \  }}|r-t          j                                        rt          d          |r&t          j                                        st          }nt          } || |||||	|
||||||           dS )zpFunctional API that performs RAdam algorithm computation.

    See :class:`~torch.optim.RAdam` for details.
    c              3   J   K   | ]}t          |t          j                  V  d S rW   )
isinstancer5   r   ).0ts     r(   	<genexpr>zradam.<locals>.<genexpr>   s.      @@qz!U\**@@@@@@r)   zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)rR   rS   r   r   r   r   r   rN   )allrF   r   r5   jitis_scripting_multi_tensor_radam_single_tensor_radam)r%   rJ   rK   rL   rM   r   r   r   rN   rR   rS   r   r   r   _funcs                   r(   r   r      s    0 @@K@@@@@ 
^
 
 	
 1&.TYZZZ
7 U59))++ USTTT $uy--// $"#D!5%     r)   c                \   t          |           D ]\  }}||         }||         }||         }||         }t          j        |          rPt          j        |          }t          j        |          }t          j        |          }t          j        |          }|dz  }t	          |          }d||z  z
  }d||z  z
  }|dk    r5|r|                    d||z  z
             n|                    ||          }|                    |d|z
             |                    |                              ||d|z
             ||z  }dd|z
  z  dz
  }|d|z  ||z  z  |z  z
  }|dk    rt          j
        |dz
  |dz
  z  |z  |dz
  |dz
  z  |z  z            }|
                                }|
r|                    |	          }n|                    |	          }t          j
        |          |z  }|                    ||z  |z  |z  d            |                    ||z  d           d S )	Nr   r   alpha)value   g      @   g      )	enumerater5   rC   view_as_realr   mul_addlerp_addcmul_mathsqrtadd_)r%   rJ   rK   rL   rM   rR   rS   r   r   r   r   r   rN   iparamrB   r@   rA   step_tr+   bias_correction1bias_correction2bias_corrected_exp_avgrho_infrho_trectexp_avg_sq_sqrtadaptive_lrs                               r(   rh   rh     s   " f%% 5@ 5@5Qx1+ ^
QE"" 	8&u--E%d++D(11G+J77J 	!&!!u},u},1% ;

1rL001111xx\x:: 	dAI&&&''d!e)'DDD ")+;!; q5y/A%!d(etm47GGG3;;919 aKGaK058: D )oo//O <"1"5"5c":":"1"6"6s";";)$455GKJJ-2[@4GtJTTTTJJ-2$J????k5@ 5@r)   c                   t          |           dk    rd S |r
J d            t          j        | ||||g          }|                                D ]\  \  }}}}}}|d         j        r,t          j        |t          j        dd          d           nt          j        |d           |rt          ||||           ddz
  z  dz
  fd	|D             }|dk    r5|
rt          j	        |d|z  z
             nt          j
        |||          }t          j        ||dz
             t          j	        |           t          j        |||dz
             ~fd
|D             }d |D             }fd|D             }t          fdt          ||          D                       }fdt          |||          D             }t          j        |          }t          j        ||	           t          j        ||           t          j        |           t          j        ||           t          j        |||           d S )Nr   z#_foreach ops don't support autogradr   cpu)devicerl   r   ro   c           	          g | ]@}d t          |          z  t          |          z  z  dt          |          z  z
  z  z
  AS )ro   r   r   )r`   r+   rS   r   s     r(   
<listcomp>z'_multi_tensor_radam.<locals>.<listcomp>  so     W W W:> Jt$4$4 4DAQAQ8Q R5Jt$4$444!6 6 W W Wr)   c                 t    g | ]4}|d k    r*t          |dz
  |dz
  z  z  dz
  dz
  z  |z  z            nd5S )   rp   ro   r   )r
   )r`   r   r   s     r(   r   z'_multi_tensor_radam.<locals>.<listcomp>  s     

 

 

  qyy 19 aKGaK058:   

 

 

r)   c                 "    g | ]}|d k    rd ndS )r   r    )r`   r   s     r(   r   z'_multi_tensor_radam.<locals>.<listcomp>  s$    ???$D1HHqq#???r)   c                 :    g | ]}d t          |          z  z
  S )r   r   )r`   r+   rR   s     r(   r   z'_multi_tensor_radam.<locals>.<listcomp>  s+    ZZZdAD)9)9 99ZZZr)   c                 ,    g | ]\  }}|z  |z  d z  S )r   )r`   r   bcr   s      r(   r   z'_multi_tensor_radam.<locals>.<listcomp>  s+    /y/y/y($PRdR20E/y/y/yr)   c           	      t    g | ]4\  }}}t          d t          |          z  z
            |z  |z  z  dz  5S )r   r   )r
   r   )r`   r+   r   r   rS   r   s       r(   r   z'_multi_tensor_radam.<locals>.<listcomp>  s[     6
 6
 6
dB 1u
4(8(88899R$Y^LrQ6
 6
 6
r)   )r4   r   "_group_tensors_by_device_and_dtyper3   is_cpur5   _foreach_add_r7   r   _foreach_mul__foreach_add_foreach_lerp__foreach_addcmul_r   zip_foreach_sqrt_foreach_div__foreach_reciprocal_)r%   rJ   rK   rL   rM   rR   rS   r   r   r   r   r   rN   grouped_tensorsgrouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_avg_sqsgrouped_state_stepsri   
rho_t_listr   unrectifiedr}   unrect_step_size*bias_correction2_sqrt_times_rect_step_sizebufferr   s        ```                   @r(   rg   rg   X  s8   " 6{{aDDDDDBFES[]hjuCvwwO ##%%CJ CJ 	
 

 q!( 	8 3U\#e5T5T5T\_````` 3Q777 	`.-9IK^___ q5y/A%W W W W WBUW W W
 1% f#NA\8I4IJJJJ % 2=.Xd e e e 	-}a%iHHH/777 3]MSTW\S\]]] 

 

 

 

 $

 

 

 @?$???ZZZZFYZZZ./y/y/y/yVYZegwVxVx/y/y/yzz6
 6
 6
 6
 6
"%&94AQ"R"R6
 6
 6
2
 $%899FC(((F$NOOO"6***F$4555 	0@&IIIIGCJ CJr)   )FNFF)rw   typingr   r   r5   r   	optimizerr   r   r	   r
   r   r   r   r   r   __all__r   __doc__r[   r8   r   rh   rg   r   r)   r(   <module>r      s    ! ! ! ! ! ! ! !       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 G
u u u u uI u u up/^ 
  
  _E` $)" 6 6L6<6 6l6 f	6
 f6 !6 d^6 6 6 6 6 	6  !6" 
#6 6 6 6rF@LF@<F@ 6lF@ f	F@
 fF@ F@ F@ 	F@ F@ 
F@ F@ !F@ F@ F@ F@ F@RZJLZJ<ZJ 6lZJ f	ZJ
 fZJ ZJ ZJ 	ZJ ZJ 
ZJ !ZJ ZJ ZJ ZJ ZJ ZJ ZJ ZJr)   