§
    ~Wêh  ã                   óT   — d Z ddlZddlmZ ddlmZ  ed¦  «        dd„¦   «         ZdS )	z!MNIST handwritten digits dataset.é    N)Úget_file)Úkeras_exportzkeras.datasets.mnist.load_dataú	mnist.npzc                 óà   — d}t          | |dz   d¬¦  «        } t          j        | d¬¦  «        5 }|d         |d         }}|d	         |d
         }}||f||ffcddd¦  «         S # 1 swxY w Y   dS )aD  Loads the MNIST dataset.

    This is a dataset of 60,000 28x28 grayscale images of the 10 digits,
    along with a test set of 10,000 images.
    More info can be found at the
    [MNIST homepage](http://yann.lecun.com/exdb/mnist/).

    Args:
      path: path where to cache the dataset locally
        (relative to `~/.keras/datasets`).

    Returns:
      Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.

    **x_train**: uint8 NumPy array of grayscale image data with shapes
      `(60000, 28, 28)`, containing the training data. Pixel values range
      from 0 to 255.

    **y_train**: uint8 NumPy array of digit labels (integers in range 0-9)
      with shape `(60000,)` for the training data.

    **x_test**: uint8 NumPy array of grayscale image data with shapes
      (10000, 28, 28), containing the test data. Pixel values range
      from 0 to 255.

    **y_test**: uint8 NumPy array of digit labels (integers in range 0-9)
      with shape `(10000,)` for the test data.

    Example:

    ```python
    (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
    assert x_train.shape == (60000, 28, 28)
    assert x_test.shape == (10000, 28, 28)
    assert y_train.shape == (60000,)
    assert y_test.shape == (10000,)
    ```

    License:
      Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset,
      which is a derivative work from original NIST datasets.
      MNIST dataset is made available under the terms of the
      [Creative Commons Attribution-Share Alike 3.0 license.](
      https://creativecommons.org/licenses/by-sa/3.0/)
    z<https://storage.googleapis.com/tensorflow/tf-keras-datasets/r   Ú@731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1)ÚoriginÚ	file_hashT)Úallow_pickleÚx_trainÚy_trainÚx_testÚy_testN)r   ÚnpÚload)ÚpathÚorigin_folderÚfr   r   r   r   s          úZ/var/www/html/movieo_spanner_bot/venv/lib/python3.11/site-packages/keras/datasets/mnist.pyÚ	load_datar      sÞ   € ð` 	Gð õ ØØ˜{Ñ*àNð	ñ ô €Dõ 
Œ DÐ	)Ñ	)Ô	)ð 4¨QØ˜Yœ<¨¨9¬ˆØ˜8œ a¨¤kˆà˜Ð! F¨FÐ#3Ð3ð	4ð 4ð 4ð 4ñ 4ô 4ð 4ð 4ð 4ð 4ð 4ð 4øøøð 4ð 4ð 4ð 4ð 4ð 4s   ®(A#Á#A'Á*A')r   )Ú__doc__Únumpyr   Úkeras.utils.data_utilsr   Ú tensorflow.python.util.tf_exportr   r   © ó    r   ú<module>r      su   ðð (Ð 'à Ð Ð Ð à +Ð +Ð +Ð +Ð +Ð +ð :Ð 9Ð 9Ð 9Ð 9Ð 9ð €Ð.Ñ/Ô/ð<4ð <4ð <4ñ 0Ô/ð<4ð <4ð <4r   