
    ~WhQ                         d Z ddlmc mZ ddlmZ ddlmZ  ed           G d de                      Z	 ed          d	             Z
dS )
zALayer that computes the maximum (element-wise) of several inputs.    N)_Merge)keras_exportzkeras.layers.Maximumc                       e Zd ZdZd ZdS )Maximuma  Layer that computes the maximum (element-wise) a list of inputs.

    It takes as input a list of tensors, all of the same shape, and returns
    a single tensor (also of the same shape).

    >>> tf.keras.layers.Maximum()([np.arange(5).reshape(5, 1),
    ...                            np.arange(5, 10).reshape(5, 1)])
    <tf.Tensor: shape=(5, 1), dtype=int64, numpy=
    array([[5],
         [6],
         [7],
         [8],
         [9]])>

    >>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
    >>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
    >>> maxed = tf.keras.layers.Maximum()([x1, x2])
    >>> maxed.shape
    TensorShape([5, 8])
    c                     |d         }t          dt          |                    D ]}t          j        |||                   }|S )Nr      )rangelentfmaximum)selfinputsoutputis       b/var/www/html/movieo_spanner_bot/venv/lib/python3.11/site-packages/keras/layers/merging/maximum.py_merge_functionzMaximum._merge_function1   sF    q#f++&& 	3 	3AZq	22FF    N)__name__
__module____qualname____doc__r    r   r   r   r      s-         *    r   r   zkeras.layers.maximumc                 ,     t          di ||           S )a  Functional interface to compute maximum (element-wise) list of `inputs`.

    This is equivalent to the `tf.keras.layers.Maximum` layer.

    For example:

    ```python
    input1 = tf.keras.layers.Input(shape=(16,))
    x1 = tf.keras.layers.Dense(8, activation='relu')(input1) #shape=(None, 8)
    input2 = tf.keras.layers.Input(shape=(32,))
    x2 = tf.keras.layers.Dense(8, activation='relu')(input2) #shape=(None, 8)
    max_inp=tf.keras.layers.maximum([x1,x2]) #shape=(None, 8)
    out = tf.keras.layers.Dense(4)(max_inp)
    model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)
    ```

    Args:
        inputs: A list of input tensors of same shape.
        **kwargs: Standard layer keyword arguments.

    Returns:
        A tensor (of same shape as input tensor) with the element-wise
        maximum of the inputs.

    Raises:
        ValueError: If input tensors are of different shape.
    r   )r   )r   kwargss     r   r   r   8   s"    : 7VV$$$r   )r   tensorflow.compat.v2compatv2r   keras.layers.merging.base_merger    tensorflow.python.util.tf_exportr   r   r   r   r   r   <module>r       s    H G " ! ! ! ! ! ! ! ! 2 2 2 2 2 2 : 9 9 9 9 9 $%%    f   &%: $%%% % &%% % %r   