
    ~Wh26                         d Z ddlZddlZddlZddlmZ ddlmZ d Z	 ed           G d dej
                              Z ed	          dd            Z ed          	 	 	 	 	 	 dd            ZdS )ai  Utilities for preprocessing sequence data.

Deprecated: `tf.keras.preprocessing.sequence` APIs are not recommended for new
code. Prefer `tf.keras.utils.timeseries_dataset_from_array` and
the `tf.data` APIs which provide a much more flexible mechanisms for dealing
with sequences. See the [tf.data guide](https://www.tensorflow.org/guide/data)
for more details.
    N)
data_utils)keras_exportc                     g g }}t          ||          D ]B\  }}t          |          | k     r*|                    |           |                    |           C||fS )aC  Removes sequences that exceed the maximum length.

    Args:
        maxlen: Int, maximum length of the output sequences.
        seq: List of lists, where each sublist is a sequence.
        label: List where each element is an integer.

    Returns:
        new_seq, new_label: shortened lists for `seq` and `label`.
    )ziplenappend)maxlenseqlabelnew_seq	new_labelxys          b/var/www/html/movieo_spanner_bot/venv/lib/python3.11/site-packages/keras/preprocessing/sequence.py_remove_long_seqr   $   si     RYGC    1q66F??NN1QI    z0keras.preprocessing.sequence.TimeseriesGeneratorc                   @    e Zd ZdZ	 	 	 	 	 	 	 ddZd Zd	 Zd
 Zd ZdS )TimeseriesGeneratora  Utility class for generating batches of temporal data.

    Deprecated: `tf.keras.preprocessing.sequence.TimeseriesGenerator` does not
    operate on tensors and is not recommended for new code. Prefer using a
    `tf.data.Dataset` which provides a more efficient and flexible mechanism for
    batching, shuffling, and windowing input. See the
    [tf.data guide](https://www.tensorflow.org/guide/data) for more details.

    This class takes in a sequence of data-points gathered at
    equal intervals, along with time series parameters such as
    stride, length of history, etc., to produce batches for
    training/validation.

    Arguments:
        data: Indexable generator (such as list or Numpy array)
            containing consecutive data points (timesteps).
            The data should be at 2D, and axis 0 is expected
            to be the time dimension.
        targets: Targets corresponding to timesteps in `data`.
            It should have same length as `data`.
        length: Length of the output sequences (in number of timesteps).
        sampling_rate: Period between successive individual timesteps
            within sequences. For rate `r`, timesteps
            `data[i]`, `data[i-r]`, ... `data[i - length]`
            are used for create a sample sequence.
        stride: Period between successive output sequences.
            For stride `s`, consecutive output samples would
            be centered around `data[i]`, `data[i+s]`, `data[i+2*s]`, etc.
        start_index: Data points earlier than `start_index` will not be used
            in the output sequences. This is useful to reserve part of the
            data for test or validation.
        end_index: Data points later than `end_index` will not be used
            in the output sequences. This is useful to reserve part of the
            data for test or validation.
        shuffle: Whether to shuffle output samples,
            or instead draw them in chronological order.
        reverse: Boolean: if `true`, timesteps in each output sample will be
            in reverse chronological order.
        batch_size: Number of timeseries samples in each batch
            (except maybe the last one).

    Returns:
        A [Sequence](
        https://www.tensorflow.org/api_docs/python/tf/keras/utils/Sequence)
        instance.

    Examples:
        ```python
        from keras.preprocessing.sequence import TimeseriesGenerator
        import numpy as np
        data = np.array([[i] for i in range(50)])
        targets = np.array([[i] for i in range(50)])
        data_gen = TimeseriesGenerator(data, targets,
                                       length=10, sampling_rate=2,
                                       batch_size=2)
        assert len(data_gen) == 20
        batch_0 = data_gen[0]
        x, y = batch_0
        assert np.array_equal(x,
                              np.array([[[0], [2], [4], [6], [8]],
                                        [[1], [3], [5], [7], [9]]]))
        assert np.array_equal(y,
                              np.array([[10], [11]]))
        ```
       r   NF   c                    t          |          t          |          k    r5t          ddt          |           z   dt          |           z             || _        || _        || _        || _        || _        ||z   | _        |t          |          dz
  }|| _        || _	        |	| _
        |
| _        | j        | j        k    rt          d| j        | j        fz            d S )NzData and targets have to bez  of same length. Data length is z while target length is r   zz`start_index+length=%i > end_index=%i` is disallowed, as no part of the sequence would be left to be used as current step.)r   
ValueErrordatatargetslengthsampling_ratestridestart_index	end_indexshufflereverse
batch_size)selfr   r   r   r   r   r   r   r    r!   r"   s              r   __init__zTimeseriesGenerator.__init__{   s    t99G$$-@SYY@@A;S\\;;<   	*&/D		AI"$dn,,< #T^45   -,r   c                 `    | j         | j        z
  | j        | j        z  z   | j        | j        z  z  S )N)r   r   r"   r   )r#   s    r   __len__zTimeseriesGenerator.__len__   s3    NT--$+0MMo+- 	-r   c                      j         r5t          j                             j         j        dz    j                  }n[ j         j         j        z  |z  z   }t          j        |t          | j         j        z  z    j        dz              j                  }t          j
         fd|D                       }t          j
         fd|D                       } j        r|d d d d ddf         |fS ||fS )Nr   )sizec                 J    g | ]}j         |j        z
  |j                  S  )r   r   r   .0rowr#   s     r   
<listcomp>z3TimeseriesGenerator.__getitem__.<locals>.<listcomp>   sA        	#+cD4FFG  r   c                 *    g | ]}j         |         S r*   )r   r+   s     r   r.   z3TimeseriesGenerator.__getitem__.<locals>.<listcomp>   s     >>>#DL->>>r   .)r    nprandomrandintr   r   r"   r   arangeminarrayr!   )r#   indexrowsisamplesr   s   `     r   __getitem__zTimeseriesGenerator.__getitem__   s*   < 
	9$$ $.1"44? %  DD  4?T[#@5#HHA9A$+55t~7IJJ D (     
 
 (>>>>>>>??< 	2111dddC<('11r   c                 l   | j         }t          | j                   j        t          j        k    r| j                                         }	 t          j        |          }n## t          $ r}t          d|          |d}~ww xY w| j	        }t          | j	                  j        t          j        k    r| j	                                        }	 t          j        |          }n## t          $ r}t          d|          |d}~ww xY w||| j
        | j        | j        | j        | j        | j        | j        | j        d
S )zReturns the TimeseriesGenerator configuration as Python dictionary.

        Returns:
            A Python dictionary with the TimeseriesGenerator configuration.
        zData not JSON Serializable:NzTargets not JSON Serializable:)
r   r   r   r   r   r   r   r    r!   r"   )r   type
__module__r1   __name__tolistjsondumps	TypeErrorr   r   r   r   r   r   r    r!   r"   )r#   r   	json_dataer   json_targetss         r   
get_configzTimeseriesGenerator.get_config   sG    y	??%449##%%D	H
4((II 	H 	H 	H94@@aG	H ,(BK77l))++G	N:g..LL 	N 	N 	N<gFFAM	N #k!/k+||/
 
 	
s0   	A 
A>(A99A>	C 
C>(C99C>c                 l    |                                  }| j        j        |d}t          j        |fi |S )a  Returns a JSON string containing the generator's configuration.

        Args:
            **kwargs: Additional keyword arguments to be passed
                to `json.dumps()`.

        Returns:
            A JSON string containing the tokenizer configuration.
        )
class_nameconfig)rG   	__class__r?   rA   rB   )r#   kwargsrJ   timeseries_generator_configs       r   to_jsonzTimeseriesGenerator.to_json   sF     "".1'
 '
# z5@@@@@r   )r   r   r   NFFr   )	r?   r>   __qualname____doc__r$   r&   r;   rG   rN   r*   r   r   r   r   7   s        @ @N ( ( ( (T- - -
     2!
 !
 !
FA A A A Ar   r   z0keras.preprocessing.sequence.make_sampling_tableh㈵>c                     d}t          j        |           }d|d<   |t          j        |          |z   z  dz   dd|z  z  z
  }||z  }t          j        d|t          j        |          z            S )a2  Generates a word rank-based probabilistic sampling table.

    Used for generating the `sampling_table` argument for `skipgrams`.
    `sampling_table[i]` is the probability of sampling
    the word i-th most common word in a dataset
    (more common words should be sampled less frequently, for balance).

    The sampling probabilities are generated according
    to the sampling distribution used in word2vec:

    ```
    p(word) = (min(1, sqrt(word_frequency / sampling_factor) /
        (word_frequency / sampling_factor)))
    ```

    We assume that the word frequencies follow Zipf's law (s=1) to derive
    a numerical approximation of frequency(rank):

    `frequency(rank) ~ 1/(rank * (log(rank) + gamma) + 1/2 - 1/(12*rank))`
    where `gamma` is the Euler-Mascheroni constant.

    Args:
        size: Int, number of possible words to sample.
        sampling_factor: The sampling factor in the word2vec formula.

    Returns:
        A 1D Numpy array of length `size` where the ith entry
        is the probability that a word of rank i should be sampled.
    gX9v?r   r   g      ?      ?g      (@)r1   r4   logminimumsqrt)r(   sampling_factorgammarankinv_fqfs         r   make_sampling_tabler\      sq    > E9T??DDGRVD\\E)*S03$+3FFF& A:c1rwqzz>***r   z&keras.preprocessing.sequence.skipgrams   rS   TFc                    g }g }	t          |           D ]\  }
}|s|||         t          j                    k     r(t          d|
|z
            }t          t	          |           |
|z   dz             }t          ||          D ]Y}||
k    rQ| |         }|s|                    ||g           |r|	                    ddg           D|	                    d           Z|dk    rut          t	          |	          |z            }d |D             t          j                   |fdt          |          D             z  }|r|	ddgg|z  z  }	n	|	dg|z  z  }	|rg|t          j	        dd          }t          j
        |           t          j        |           t          j
        |           t          j        |	           ||	fS )as  Generates skipgram word pairs.

    This function transforms a sequence of word indexes (list of integers)
    into tuples of words of the form:

    - (word, word in the same window), with label 1 (positive samples).
    - (word, random word from the vocabulary), with label 0 (negative samples).

    Read more about Skipgram in this gnomic paper by Mikolov et al.:
    [Efficient Estimation of Word Representations in
    Vector Space](http://arxiv.org/pdf/1301.3781v3.pdf)

    Args:
        sequence: A word sequence (sentence), encoded as a list
            of word indices (integers). If using a `sampling_table`,
            word indices are expected to match the rank
            of the words in a reference dataset (e.g. 10 would encode
            the 10-th most frequently occurring token).
            Note that index 0 is expected to be a non-word and will be skipped.
        vocabulary_size: Int, maximum possible word index + 1
        window_size: Int, size of sampling windows (technically half-window).
            The window of a word `w_i` will be
            `[i - window_size, i + window_size+1]`.
        negative_samples: Float >= 0. 0 for no negative (i.e. random) samples.
            1 for same number as positive samples.
        shuffle: Whether to shuffle the word couples before returning them.
        categorical: bool. if False, labels will be
            integers (eg. `[0, 1, 1 .. ]`),
            if `True`, labels will be categorical, e.g.
            `[[1,0],[0,1],[0,1] .. ]`.
        sampling_table: 1D array of size `vocabulary_size` where the entry i
            encodes the probability to sample a word of rank i.
        seed: Random seed.

    Returns:
        couples, labels: where `couples` are int pairs and
            `labels` are either 0 or 1.

    Note:
        By convention, index 0 in the vocabulary is
        a non-word and will be skipped.
    Nr   r   c                     g | ]
}|d          S )r   r*   )r,   cs     r   r.   zskipgrams.<locals>.<listcomp>m  s    '''!1'''r   c                 p    g | ]2}|t                    z           t          j        d d z
            g3S )r   )r   r2   r3   )r,   r9   vocabulary_sizewordss     r   r.   zskipgrams.<locals>.<listcomp>p  sN     
 
 
 1s5zz>"FN1o6I$J$JK
 
 
r   g    cA)	enumerater2   maxr5   r   ranger   intr    r3   seed)sequencerb   window_sizenegative_samplesr    categoricalsampling_tablerh   coupleslabelsr9   wiwindow_start
window_endjwjnum_negative_samplesrc   s    `               @r   	skipgramsrv      s0   j GF8$$ % %2 	%b!FMOO331a+o..XK!(;<<
|Z00 		% 		%AAvva[ Bx((( %MM1a&))))MM!$$$		% !"3v;;1A#ABB''w'''u 
 
 
 
 
/00
 
 
 	
  	11vh!555FFqc000F <>!T**DDwDvF?r   )rQ   )r]   rS   TFNN)rP   rA   r2   numpyr1   keras.utilsr    tensorflow.python.util.tf_exportr   r   Sequencer   r\   rv   r*   r   r   <module>r{      s9          " " " " " " : 9 9 9 9 9  & @AA}A }A }A }A }A*- }A }A BA}A@ @AA$+ $+ $+ BA$+N 677 	` ` ` 87` ` `r   