
    ~Wh?                        d Z ddlmc mZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ ddlmZ dd	lmZ d
ZdZ e            Z edd          	 	 	 	 	 	 	 dd            Z	 ddZ ed          dd            Z ed          d d            Zej                            dej        ej                  e_         ej        j         e_         dS )!zInception V3 model for Keras.

Reference:
  - [Rethinking the Inception Architecture for Computer Vision](
      http://arxiv.org/abs/1512.00567) (CVPR 2016)
    N)backend)imagenet_utils)training)VersionAwareLayers)
data_utils)layer_utils)keras_exportz|https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels.h5zhttps://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5z+keras.applications.inception_v3.InceptionV3zkeras.applications.InceptionV3Timagenet  softmaxc           
         |dv s6t           j        j                            |          st	          d|           |dk    r| r|dk    rt	          d|           t          j        |ddt          j                    | |          }|t          
                    |
          }n3t          j        |          st          
                    ||          }n|}t          j                    dk    rd}nd}t          |ddddd          }	t          |	dddd          }	t          |	ddd          }	t                              dd          |	          }	t          |	dddd          }	t          |	dddd          }	t                              dd          |	          }	t          |	ddd          }
t          |	ddd          }t          |ddd          }t          |	ddd          }t          |ddd          }t          |ddd          }t                              ddd          |	          }t          |ddd          }t                              |
|||g|d          }	t          |	ddd          }
t          |	ddd          }t          |ddd          }t          |	ddd          }t          |ddd          }t          |ddd          }t                              ddd          |	          }t          |ddd          }t                              |
|||g|d           }	t          |	ddd          }
t          |	ddd          }t          |ddd          }t          |	ddd          }t          |ddd          }t          |ddd          }t                              ddd          |	          }t          |ddd          }t                              |
|||g|d!          }	t          |	d"dddd          }t          |	ddd          }t          |ddd          }t          |ddddd          }t                              dd          |	          }t                              |||g|d#          }	t          |	ddd          }
t          |	d$dd          }t          |d$dd%          }t          |dd%d          }t          |	d$dd          }t          |d$d%d          }t          |d$dd%          }t          |d$d%d          }t          |ddd%          }t                              ddd          |	          }t          |ddd          }t                              |
|||g|d&          }	t!          d'          D ]}t          |	ddd          }
t          |	d(dd          }t          |d(dd%          }t          |dd%d          }t          |	d(dd          }t          |d(d%d          }t          |d(dd%          }t          |d(d%d          }t          |ddd%          }t                              ddd          |	          }t          |ddd          }t                              |
|||g|d)t#          d|z             z             }	t          |	ddd          }
t          |	ddd          }t          |ddd%          }t          |dd%d          }t          |	ddd          }t          |dd%d          }t          |ddd%          }t          |dd%d          }t          |ddd%          }t                              ddd          |	          }t          |ddd          }t                              |
|||g|d*          }	t          |	ddd          }t          |d+dddd          }t          |	ddd          }t          |ddd%          }t          |dd%d          }t          |ddddd          }t                              dd          |	          }t                              |||g|d,          }	t!          d'          D ]K}t          |	d+dd          }
t          |	d"dd          }t          |d"dd          }t          |d"dd          }t                              ||g|d-t#          |          z             }t          |	d.dd          }t          |d"dd          }t          |d"dd          }t          |d"dd          }t                              ||g|/          }t                              ddd          |	          }t          |ddd          }t                              |
|||g|d)t#          d0|z             z             }	M| r^t                              d12          |	          }	t          j        ||           t                              ||d34          |	          }	nO|d5k    r"t                                          |	          }	n'|d6k    r!t                                          |	          }	|t-          j        |          }n|}t1          j        ||	d72          }|dk    rS| rt5          j        d8t8          d9d:;          }nt5          j        d<t:          d9d=;          }|                    |           n||                    |           |S )>a  Instantiates the Inception v3 architecture.

    Reference:
    - [Rethinking the Inception Architecture for Computer Vision](
        http://arxiv.org/abs/1512.00567) (CVPR 2016)

    This function returns a Keras image classification model,
    optionally loaded with weights pre-trained on ImageNet.

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    Note: each Keras Application expects a specific kind of input preprocessing.
    For `InceptionV3`, call
    `tf.keras.applications.inception_v3.preprocess_input` on your inputs before
    passing them to the model. `inception_v3.preprocess_input` will scale input
    pixels between -1 and 1.

    Args:
      include_top: Boolean, whether to include the fully-connected
        layer at the top, as the last layer of the network. Default to `True`.
      weights: One of `None` (random initialization),
        `imagenet` (pre-training on ImageNet),
        or the path to the weights file to be loaded. Default to `imagenet`.
      input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`)
        to use as image input for the model. `input_tensor` is useful for
        sharing inputs between multiple different networks. Default to None.
      input_shape: Optional shape tuple, only to be specified
        if `include_top` is False (otherwise the input shape
        has to be `(299, 299, 3)` (with `channels_last` data format)
        or `(3, 299, 299)` (with `channels_first` data format).
        It should have exactly 3 inputs channels,
        and width and height should be no smaller than 75.
        E.g. `(150, 150, 3)` would be one valid value.
        `input_shape` will be ignored if the `input_tensor` is provided.
      pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` (default) means that the output of the model will be
            the 4D tensor output of the last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will be applied.
      classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified. Default to 1000.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.

    Returns:
      A `keras.Model` instance.
    >   Nr
   zThe `weights` argument should be either `None` (random initialization), `imagenet` (pre-training on ImageNet), or the path to the weights file to be loaded; Received: weights=r
   r   zjIf using `weights` as `"imagenet"` with `include_top` as true, `classes` should be 1000; Received classes=i+  K   )default_sizemin_sizedata_formatrequire_flattenweightsN)shape)tensorr   channels_first          )   r   valid)stridespadding)r   @   )r   r   )r   P      0      `   r   r   samemixed0)axisnamemixed1mixed2i  mixed3      mixed4r      mixedmixed7i@  mixed8mixed9_i  )r'   	   avg_poolr(   predictions)
activationr(   avgmaxinception_v3z2inception_v3_weights_tf_dim_ordering_tf_kernels.h5models 9a0d58056eeedaa3f26cb7ebd46da564)cache_subdir	file_hashz8inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 bcbd6486424b2319ff4ef7d526e38f63)tfiogfileexists
ValueErrorr   obtain_input_shaper   image_data_formatlayersInputis_keras_tensor	conv2d_bnMaxPooling2DAveragePooling2DconcatenaterangestrGlobalAveragePooling2Dvalidate_activationDenseGlobalMaxPooling2Dr   get_source_inputsr   Modelr   get_fileWEIGHTS_PATHWEIGHTS_PATH_NO_TOPload_weights)include_topr   input_tensorinput_shapepoolingclassesclassifier_activation	img_inputchannel_axisx	branch1x1	branch5x5branch3x3dblbranch_pool	branch3x3	branch7x7branch7x7dblibranch7x7x3branch3x3_1branch3x3_2branch3x3dbl_1branch3x3dbl_2inputsmodelweights_paths                             e/var/www/html/movieo_spanner_bot/venv/lib/python3.11/site-packages/keras/applications/inception_v3.pyInceptionV3ru   /   s   T )))RU[-?-?-H-H)+ ")	+ +
 
 	
 *D* '* *
 
 	
 !3-//#  K LL{L33		&|44 	%LLLII$I ""&666)RAvwGGGA!RAw///A!RAAFF33A66A!RAw///A!S!Q000AFF33A66A !RA&&I!RA&&I)RA..IQAq))L\2q!44L\2q!44L)) *  	 	K KQ22K	I|[9 	 	 	A !RA&&I!RA&&I)RA..IQAq))L\2q!44L\2q!44L)) *  	 	K KQ22K	I|[9 	 	 	A !RA&&I!RA&&I)RA..IQAq))L\2q!44L\2q!44L)) *  	 	K KQ22K	I|[9 	 	 	A !S!QHHHIQAq))L\2q!44Lb!Q  L %%ff%==a@@K	L+.\ 	 	 	A
 !S!Q''I!S!Q''I)S!Q//I)S!Q//IQQ**L\3155L\3155L\3155L\3155L)) *  	 	K Ka33K	I|[9 	 	 	A 1XX 
 
aa++	aa++	ia33	ia33	 CA.. sAq99 sAq99 sAq99 sAq99--FF . 
 

   S!Q77	<=3q1u::%  
 
 !S!Q''I!S!Q''I)S!Q//I)S!Q//IQQ**L\3155L\3155L\3155L\3155L)) *  	 	K Ka33K	I|[9 	 	 	A !S!Q''I)S!QPPPIAsAq))KKa33KKa33KS!Q  K %%ff%==a@@K	K-Lx 	 	 	A
 1XX 
 
aa++	aa++		3155	3155&&+&SVV# ' 
 
	 !CA.. sAq99"<a;;"<a;;))^,< * 
 
 --FF . 
 

   S!Q77	<=3q1u::%  
 

  /))z)::1==*+@'JJJLL 5M  
 

  e--//22AA))++A..A .|<<N61>:::E * 	%.D%<	  LL &.J#%<	  L 	<((((		7###L    r%   r$   c           	      F   ||dz   }|dz   }nd}d}t          j                    dk    rd}	nd}	t                              |||f||d|          |           } t                              |	d|	          |           } t                              d
|          |           } | S )a  Utility function to apply conv + BN.

    Args:
      x: input tensor.
      filters: filters in `Conv2D`.
      num_row: height of the convolution kernel.
      num_col: width of the convolution kernel.
      padding: padding mode in `Conv2D`.
      strides: strides in `Conv2D`.
      name: name of the ops; will become `name + '_conv'`
        for the convolution and `name + '_bn'` for the
        batch norm layer.

    Returns:
      Output tensor after applying `Conv2D` and `BatchNormalization`.
    N_bn_convr   r   r   F)r   r   use_biasr(   )r'   scaler(   relur6   )r   rG   rH   Conv2DBatchNormalization
Activation)
rc   filtersnum_rownum_colr   r   r(   bn_name	conv_namebn_axiss
             rt   rK   rK     s    & ,7N			 ""&666	' 	 	 	 		 		A 	!!we'!JJ1MMA&t,,Q//AHrv   z0keras.applications.inception_v3.preprocess_inputc                 0    t          j        | |d          S )NrA   )r   mode)r   preprocess_input)rc   r   s     rt   r   r     s#    *	{   rv   z2keras.applications.inception_v3.decode_predictionsr"   c                 .    t          j        | |          S )N)top)r   decode_predictions)predsr   s     rt   r   r     s    ,U<<<<rv    )r   reterror)Tr
   NNNr   r   )r%   r$   N)N)r"   )__doc__tensorflow.compat.v2compatv2rA   kerasr   keras.applicationsr   keras.enginer   keras.layersr   keras.utilsr   r    tensorflow.python.util.tf_exportr	   rX   rY   rH   ru   rK   r   r   PREPROCESS_INPUT_DOCformatPREPROCESS_INPUT_RET_DOC_TFPREPROCESS_INPUT_ERROR_DOC rv   rt   <module>r      s     " ! ! ! ! ! ! ! !       - - - - - - ! ! ! ! ! ! + + + + + + " " " " " " # # # # # # : 9 9 9 9 9F 
L 
 
			 1$ 
 #^ ^ ^	 ^D HL' ' ' 'T @AA   BA BCC= = = DC= *>EE	2

3 F    
 ,>F    rv   