§
    ~Wêh+  ã                   ób   — d Z ddlZddlZddlZddlmZ ddlmZ  ed¦  «        d„ ¦   «         Z	dS )zFashion-MNIST dataset.é    N)Úget_file)Úkeras_exportz&keras.datasets.fashion_mnist.load_datac                  ót  — t           j                             dd¦  «        } d}g d¢}g }|D ]*}|                     t	          |||z   | ¬¦  «        ¦  «         Œ+t          j        |d         d¦  «        5 }t          j        | 	                    ¦   «         t          j
        d¬	¦  «        }d
d
d
¦  «         n# 1 swxY w Y   t          j        |d         d¦  «        5 }t          j        | 	                    ¦   «         t          j
        d¬	¦  «                             t          |¦  «        dd¦  «        }d
d
d
¦  «         n# 1 swxY w Y   t          j        |d         d¦  «        5 }t          j        | 	                    ¦   «         t          j
        d¬	¦  «        }	d
d
d
¦  «         n# 1 swxY w Y   t          j        |d         d¦  «        5 }t          j        | 	                    ¦   «         t          j
        d¬	¦  «                             t          |	¦  «        dd¦  «        }
d
d
d
¦  «         n# 1 swxY w Y   ||f|
|	ffS )a^  Loads the Fashion-MNIST dataset.

    This is a dataset of 60,000 28x28 grayscale images of 10 fashion categories,
    along with a test set of 10,000 images. This dataset can be used as
    a drop-in replacement for MNIST.

    The classes are:

    | Label | Description |
    |:-----:|-------------|
    |   0   | T-shirt/top |
    |   1   | Trouser     |
    |   2   | Pullover    |
    |   3   | Dress       |
    |   4   | Coat        |
    |   5   | Sandal      |
    |   6   | Shirt       |
    |   7   | Sneaker     |
    |   8   | Bag         |
    |   9   | Ankle boot  |

    Returns:
      Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.

    **x_train**: uint8 NumPy array of grayscale image data with shapes
      `(60000, 28, 28)`, containing the training data.

    **y_train**: uint8 NumPy array of labels (integers in range 0-9)
      with shape `(60000,)` for the training data.

    **x_test**: uint8 NumPy array of grayscale image data with shapes
      (10000, 28, 28), containing the test data.

    **y_test**: uint8 NumPy array of labels (integers in range 0-9)
      with shape `(10000,)` for the test data.

    Example:

    ```python
    (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
    assert x_train.shape == (60000, 28, 28)
    assert x_test.shape == (10000, 28, 28)
    assert y_train.shape == (60000,)
    assert y_test.shape == (10000,)
    ```

    License:
      The copyright for Fashion-MNIST is held by Zalando SE.
      Fashion-MNIST is licensed under the [MIT license](
      https://github.com/zalandoresearch/fashion-mnist/blob/master/LICENSE).

    Údatasetszfashion-mnistz<https://storage.googleapis.com/tensorflow/tf-keras-datasets/)ztrain-labels-idx1-ubyte.gzztrain-images-idx3-ubyte.gzzt10k-labels-idx1-ubyte.gzzt10k-images-idx3-ubyte.gz)ÚoriginÚcache_subdirr   Úrbé   )ÚoffsetNé   é   é   é   é   )ÚosÚpathÚjoinÚappendr   ÚgzipÚopenÚnpÚ
frombufferÚreadÚuint8ÚreshapeÚlen)ÚdirnameÚbaseÚfilesÚpathsÚfnameÚlbpathÚy_trainÚimgpathÚx_trainÚy_testÚx_tests              úb/var/www/html/movieo_spanner_bot/venv/lib/python3.11/site-packages/keras/datasets/fashion_mnist.pyÚ	load_datar)      s  € õl ŒglŠl˜: Ñ7Ô7€GØI€Dðð ð €Eð €EØð Qð QˆØŠ•X˜e¨D°5©LÀwÐOÑOÔOÑPÔPÐPÐPå	Œ5˜”8˜TÑ	"Ô	"ð C fÝ”- §¢¡¤­r¬xÀÐBÑBÔBˆðCð Cð Cñ Cô Cð Cð Cð Cð Cð Cð Cøøøð Cð Cð Cð Cõ 
Œ5˜”8˜TÑ	"Ô	"ð 
 gÝ”- §¢¡¤µ´ÀÐDÑDÔD×LÒLÝ‰LŒL˜"˜bñ
ô 
ˆð
ð 
ð 
ñ 
ô 
ð 
ð 
ð 
ð 
ð 
ð 
øøøð 
ð 
ð 
ð 
õ
 
Œ5˜”8˜TÑ	"Ô	"ð B fÝ”˜vŸ{š{™}œ}­b¬h¸qÐAÑAÔAˆðBð Bð Bñ Bô Bð Bð Bð Bð Bð Bð Bøøøð Bð Bð Bð Bõ 
Œ5˜”8˜TÑ	"Ô	"ð 
 gÝ”˜wŸ|š|™~œ~­r¬xÀÐCÑCÔC×KÒKÝ‰KŒK˜˜Rñ
ô 
ˆð
ð 
ð 
ñ 
ô 
ð 
ð 
ð 
ð 
ð 
ð 
øøøð 
ð 
ð 
ð 
ð
 WÐ ¨Ð/Ð/Ð/sJ   Á14B1Â1B5Â8B5ÃAD9Ä9D=Å D=Å4FÆF#Æ&F#ÇAH'È'H+È.H+)
Ú__doc__r   r   Únumpyr   Úkeras.utils.data_utilsr   Ú tensorflow.python.util.tf_exportr   r)   © ó    r(   ú<module>r0      s‡   ðð Ð à €€€Ø 	€	€	€	à Ð Ð Ð à +Ð +Ð +Ð +Ð +Ð +ð :Ð 9Ð 9Ð 9Ð 9Ð 9ð €Ð6Ñ7Ô7ðR0ð R0ñ 8Ô7ðR0ð R0ð R0r/   