
    ~Wh                          d Z ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlm	Z	 ddl
mZ  ed	d
           G d de	                      ZeZdS )zKeras 3D convolution layer.    )activations)constraints)initializers)regularizers)utils)Conv)keras_exportzkeras.layers.Conv3Dzkeras.layers.Convolution3Dc                   Z     e Zd ZdZej        	 	 	 	 	 	 	 	 	 	 	 	 	 	 d
 fd		            Z xZS )Conv3Da#  3D convolution layer (e.g. spatial convolution over volumes).

    This layer creates a convolution kernel that is convolved
    with the layer input to produce a tensor of
    outputs. If `use_bias` is True,
    a bias vector is created and added to the outputs. Finally, if
    `activation` is not `None`, it is applied to the outputs as well.

    When using this layer as the first layer in a model,
    provide the keyword argument `input_shape`
    (tuple of integers or `None`, does not include the sample axis),
    e.g. `input_shape=(128, 128, 128, 1)` for 128x128x128 volumes
    with a single channel,
    in `data_format="channels_last"`.

    Examples:

    >>> # The inputs are 28x28x28 volumes with a single channel, and the
    >>> # batch size is 4
    >>> input_shape =(4, 28, 28, 28, 1)
    >>> x = tf.random.normal(input_shape)
    >>> y = tf.keras.layers.Conv3D(
    ... 2, 3, activation='relu', input_shape=input_shape[1:])(x)
    >>> print(y.shape)
    (4, 26, 26, 26, 2)

    >>> # With extended batch shape [4, 7], e.g. a batch of 4 videos of
    >>> # 3D frames, with 7 frames per video.
    >>> input_shape = (4, 7, 28, 28, 28, 1)
    >>> x = tf.random.normal(input_shape)
    >>> y = tf.keras.layers.Conv3D(
    ... 2, 3, activation='relu', input_shape=input_shape[2:])(x)
    >>> print(y.shape)
    (4, 7, 26, 26, 26, 2)

    Args:
      filters: Integer, the dimensionality of the output space (i.e. the number
        of output filters in the convolution).
      kernel_size: An integer or tuple/list of 3 integers, specifying the depth,
        height and width of the 3D convolution window. Can be a single integer
        to specify the same value for all spatial dimensions.
      strides: An integer or tuple/list of 3 integers, specifying the strides of
        the convolution along each spatial dimension. Can be a single integer to
        specify the same value for all spatial dimensions. Specifying any stride
        value != 1 is incompatible with specifying any `dilation_rate` value !=
        1.
      padding: one of `"valid"` or `"same"` (case-insensitive).
        `"valid"` means no padding. `"same"` results in padding with zeros
        evenly to the left/right or up/down of the input such that output has
        the same height/width dimension as the input.
      data_format: A string, one of `channels_last` (default) or
        `channels_first`.  The ordering of the dimensions in the inputs.
        `channels_last` corresponds to inputs with shape `batch_shape +
        (spatial_dim1, spatial_dim2, spatial_dim3, channels)` while
        `channels_first` corresponds to inputs with shape `batch_shape +
        (channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to
        the `image_data_format` value found in your Keras config file at
        `~/.keras/keras.json`. If you never set it, then it will be
        "channels_last". Note that the `channels_first` format is currently not
        supported by TensorFlow on CPU.
      dilation_rate: an integer or tuple/list of 3 integers, specifying the
        dilation rate to use for dilated convolution. Can be a single integer to
        specify the same value for all spatial dimensions. Currently, specifying
        any `dilation_rate` value != 1 is incompatible with specifying any
        stride value != 1.
      groups: A positive integer specifying the number of groups in which the
        input is split along the channel axis. Each group is convolved
        separately with `filters / groups` filters. The output is the
        concatenation of all the `groups` results along the channel axis. Input
        channels and `filters` must both be divisible by `groups`.
      activation: Activation function to use. If you don't specify anything, no
        activation is applied (see `keras.activations`).
      use_bias: Boolean, whether the layer uses a bias vector.
      kernel_initializer: Initializer for the `kernel` weights matrix (see
        `keras.initializers`). Defaults to 'glorot_uniform'.
      bias_initializer: Initializer for the bias vector (see
        `keras.initializers`). Defaults to 'zeros'.
      kernel_regularizer: Regularizer function applied to the `kernel` weights
        matrix (see `keras.regularizers`).
      bias_regularizer: Regularizer function applied to the bias vector (see
        `keras.regularizers`).
      activity_regularizer: Regularizer function applied to the output of the
        layer (its "activation") (see `keras.regularizers`).
      kernel_constraint: Constraint function applied to the kernel matrix (see
        `keras.constraints`).
      bias_constraint: Constraint function applied to the bias vector (see
        `keras.constraints`).

    Input shape:
      5+D tensor with shape: `batch_shape + (channels, conv_dim1, conv_dim2,
        conv_dim3)` if data_format='channels_first'
      or 5+D tensor with shape: `batch_shape + (conv_dim1, conv_dim2, conv_dim3,
        channels)` if data_format='channels_last'.

    Output shape:
      5+D tensor with shape: `batch_shape + (filters, new_conv_dim1,
        new_conv_dim2, new_conv_dim3)` if data_format='channels_first'
      or 5+D tensor with shape: `batch_shape + (new_conv_dim1, new_conv_dim2,
        new_conv_dim3, filters)` if data_format='channels_last'.
        `new_conv_dim1`, `new_conv_dim2` and `new_conv_dim3` values might have
        changed due to padding.

    Returns:
      A tensor of rank 5+ representing
      `activation(conv3d(inputs, kernel) + bias)`.

    Raises:
      ValueError: if `padding` is "causal".
      ValueError: when both `strides > 1` and `dilation_rate > 1`.
       r   r   validNr   Tglorot_uniformzerosc                     t                      j        di ddd|d|d|d|d|d|d	|d
t          j        |          d|	dt	          j        |
          dt	          j        |          dt          j        |          dt          j        |          dt          j        |          dt          j        |          dt          j        |          | d S )Nrank   filterskernel_sizestridespaddingdata_formatdilation_rategroups
activationuse_biaskernel_initializerbias_initializerkernel_regularizerbias_regularizeractivity_regularizerkernel_constraintbias_constraint )super__init__r   getr   r   r   )selfr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   kwargs	__class__s                     g/var/www/html/movieo_spanner_bot/venv/lib/python3.11/site-packages/keras/layers/convolutional/conv3d.pyr&   zConv3D.__init__   sb   * 	 	
 	
 	
	
G	
 $	
 G		

 G	
 $	
 (-	
 6	
 #z222	
 X	
  ,/0BCCC	
 *-.>???	
  ,/0BCCC	
 *-.>???	
 ".!12F!G!G!G	
  *o.?@@@!	
" (OO<<<%	
 	
 	
 	
 	
    )r   r   Nr   r   NTr   r   NNNNN)__name__
__module____qualname____doc__r   allow_initializer_layoutr&   __classcell__)r*   s   @r+   r   r      s        m m^ #
 + !#'
 '
 '
 '
 '
 $#'
 '
 '
 '
 '
r,   r   N)r0   kerasr   r   r   r   keras.dtensorr   $keras.layers.convolutional.base_convr    tensorflow.python.util.tf_exportr	   r   Convolution3Dr$   r,   r+   <module>r8      s    " !                               5 5 5 5 5 5 : 9 9 9 9 9 #%ABBX
 X
 X
 X
 X
T X
 X
 CBX
z r,   